Policy Report | 
October 2023

Open-sourcing highly capable foundation models

An evaluation of risks, benefits, and alternative methods for pursuing open-source objectives

Elizabeth Seger, Noemi Dreksler, Richard Moulange, Emily Dardaman, Jonas Schuett, K. Wei, Christoph Winter, Mackenzie Arnold, Seán Ó hÉigeartaigh, Anton Korinek, Markus Anderljung, Ben Bucknall, Alan Chan, Eoghan Stafford, Leonie Koessler, Aviv Ovadya, Ben Garfinkel, Emma Bluemke, Michael Aird, Patrick Levermore, Julian Hazell, Abhishek Gupta
Share
Cite

Elizabeth Seger, Noemi Dreksler, Richard Moulange, Emily Dardaman, Jonas Schuet, K. Wei et al., Open-Sourcing Highly Capable Foundation Models: An Evaluation of Risks, Benefits, and Alternative Methods for Pursuing Open-Source Objectives, Ctr. for Governance of A.I. (2023), https://cdn.governance.ai/Open-Sourcing_Highly_Capable_Foundation_Models_2023_GovAI.pdf.

Open-sourcing highly capable foundation models
An evaluation of risks, benefits, and alternative methods for pursuing open-source objectives
Elizabeth Seger, Noemi Dreksler, Richard Moulange, Emily Dardaman, Jonas Schuett, K. Wei, Christoph Winter, Mackenzie Arnold, Seán Ó hÉigeartaigh, Anton Korinek, Markus Anderljung, Ben Bucknall, Alan Chan, Eoghan Stafford, Leonie Koessler, Aviv Ovadya, Ben Garfinkel, Emma Bluemke, Michael Aird, Patrick Levermore, Julian Hazell, Abhishek Gupta
Open-sourcing highly capable foundation models
An evaluation of risks, benefits, and alternative methods for pursuing open-source objectives
Elizabeth Seger, Noemi Dreksler, Richard Moulange, Emily Dardaman, Jonas Schuett, K. Wei, Christoph Winter, Mackenzie Arnold, Seán Ó hÉigeartaigh, Anton Korinek, Markus Anderljung, Ben Bucknall, Alan Chan, Eoghan Stafford, Leonie Koessler, Aviv Ovadya, Ben Garfinkel, Emma Bluemke, Michael Aird, Patrick Levermore, Julian Hazell, Abhishek Gupta